Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37372055

RESUMO

Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (ß), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, ß-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, ß-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and ß-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of ß-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a ß-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and ß-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.

2.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799806

RESUMO

Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina's γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii's γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.


Assuntos
Proteínas de Bactérias/metabolismo , Biomineralização , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dióxido de Carbono/química , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Catálise , Domínio Catalítico , Simulação por Computador , Fontes Termais/microbiologia , Fontes Hidrotermais/microbiologia , Simulação de Dinâmica Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Temperatura , Thermus thermophilus/enzimologia
3.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670016

RESUMO

Atovaquone (ATQ) is a drug used to prevent and treat malaria that functions by targeting the Plasmodium falciparum cytochrome b (PfCytb) protein. PfCytb catalyzes the transmembrane electron transfer (ET) pathway which maintains the mitochondrial membrane potential. The ubiquinol substrate binding site of the protein has heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors that act as redox centers to aid in ET. Recent studies investigating ATQ resistance mechanisms have shown that point mutations of PfCytb confer resistance. Thus, understanding the resistance mechanisms at the molecular level via computational approaches incorporating phospholipid bilayer would help in the design of new efficacious drugs that are also capable of bypassing parasite resistance. With this knowledge gap, this article seeks to explore the effect of three drug resistant mutations Y268C, Y268N and Y268S on the PfCytb structure and function in the presence and absence of ATQ. To draw reliable conclusions, 350 ns all-atom membrane (POPC:POPE phospholipid bilayer) molecular dynamics (MD) simulations with derived metal parameters for the holo and ATQ-bound -proteins were performed. Thereafter, simulation outputs were analyzed using dynamic residue network (DRN) analysis. Across the triplicate MD runs, hydrophobic interactions, reported to be crucial in protein function were assessed. In both, the presence and absence of ATQ and a loss of key active site residue interactions were observed as a result of mutations. These active site residues included: Met 133, Trp136, Val140, Thr142, Ile258, Val259, Pro260 and Phe264. These changes to residue interactions are likely to destabilize the overall intra-protein residue communication network where the proteins' function could be implicated. Protein dynamics of the ATQ-bound mutant complexes showed that they assumed a different pose to the wild-type, resulting in diminished residue interactions in the mutant proteins. In summary, this study presents insights on the possible effect of the mutations on ATQ drug activity causing resistance and describes accurate MD simulations in the presence of the lipid bilayer prior to conducting inhibitory drug discovery for the PfCytb-iron sulphur protein (Cytb-ISP) complex.


Assuntos
Atovaquona/farmacologia , Citocromos b/genética , Resistência a Medicamentos/genética , Proteínas Ferro-Enxofre/genética , Bicamadas Lipídicas/metabolismo , Mutação/genética , Fosfolipídeos/metabolismo , Plasmodium falciparum/genética , Animais , Atovaquona/química , Domínio Catalítico , Bovinos , Resistência a Medicamentos/efeitos dos fármacos , Entropia , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Mapas de Interação de Proteínas , Estabilidade Proteica
4.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138066

RESUMO

With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/isolamento & purificação , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Fontes Hidrotermais/microbiologia , Sequestrantes/metabolismo , Sequência de Aminoácidos , Dióxido de Carbono/metabolismo , Simulação por Computador , Simulação de Dinâmica Molecular , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...